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Computing the Flow around a Submerged Body Using Composite Grids
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The subject of this paper is an accurate numerical method for solving
the linear two-dimensional steady potentialt flow around a body which
moves in a liquid of finite constant depth at constant speed and dis-
tance below the free surface. The differential equation is discretized by
a second-order accurate finite difference scheme on a compesite grid.
The compaosite grid consists of two overlapping component grids; one
curvilinear grid close to the body and one Cartesian grid which covers
the surrounding liguid. To solve the problem numerically, the infinite
domain is truncated to finite length. The inflow and outflow boundary
conditions are formed by making an eigenfunction expansion of the
solution ahead of and behind the body. £ach eigenfunction is required
to be bounded and satisfy the upstream condition at infinity. This is
imposed by functional relations between the solution and its normal
derivative at the inflow and outflow boundaries. The method is carefully
validated and the computed sclutions are found to be in very good
agreement with existing results.  © 1992 Academic Press. Inc.

1. INTRODUCTION

Consider the two-dimensional steady potential flow
around a submerged body moving in a liquid of finite con-
stant depth at constant speed and distance below the free
surface, The physical quantities are scaled by the speed of
the body, U, and the length of the gravity waves behind it,
U?’/g, where g is the acceleration of gravity. The motion is
described in Cartesian coordinates fixed with respect to the
body, where the x-axis points opposite to the forward
velocity and the z-axis is directed vertically upwards. z = —d
corresponds to the bottom and z =0 to the undisturbed free
surface, where  is the non-dimensional depth. The total
velocity potential is split into a free stream potential plus
a perturbation potential: € =x+¢. By linearizing the
boundary condition at the free surface around the free
stream flow, cf. [ 12], the following problem is obtained for
the perturbation potential:

d¢=0, —oo<x<ow,~d<z=<l, (1)

together with the boundary conditions,

¢x.r+¢’::0 _‘I)<X<(XJ,Z=0 (2)
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—wL<x<w, z=—d (3)

$.=0
d¢/dn+cos §=0 on the body. {4)

Here ¢/0n denotes the outward normal derivative and # is
the angle between the outwardly directed normal to the
body and the x-direction. The steady solution is regarded as
the large-time limit of an unsteady solution, where the body
accelerates from rest to the constant velocity, This impiies
that the perturbation potential must tend to a constant
value at large distances in front of the bedy. This condition
will be called the upstream condition,

lim ¢(x,z)=const, —d<z<0

X = =

(3)

The aim of the research described here is to take a first
step towards an accurate numerical method for the non-
linear potential problem, where the boundary condition at
the free surface is not linearized. In particular, the method
developed in this paper does not rely on the addition of
artificial damping in the boundary condition at the free
surface. Furthermore, the present method is possible to
extend to incorporate effects of vorticity and viscosity.

Two main classes of numerical techniques have been used
previousiy to solve the present problem. These are based on
boundary integral methods and finite element techniques.
There are two different types of boundary integral methods.
The first uses a kernel which satisfies the boundary condi-
tion on the free surface and the upstream condition, ¢f. [4].
In this method, there are dependent variables only ajong the
surface of the body but the kernel is rather difficult and
expensive to evaluate numerically, Moreover, this technique
is not generalizable to the nonlinear problem. The second
boundary integral method employs a kernel which does not
satisfy any boundary conditions but is easy and inexpensive
to evaluate, cf. [3, 6]. The dependent variables are located
along the boundary of the body and at the infinite surface,
which needs to be truncated in the numerical approxima-
tion. This method has also been attempted for the nonlinear
problem, cf. [7]. Here it is necessary to add artificial dis-
sipation to the boundary condition at the free surface to
obtain a solution which satisfies the boundary condition. To
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make the method work, it was found necessary to increase
the artificial dissipation as the speed of the body was
increased. However, it is not well understood how the
dissipation affects the solution.

The finite element techniques are based on dividing the
fluid domain into two subdomains, one close to the body
and one outer domain. The domain close to the body is dis-
cretized by finite elements and analytical solutions are used
ahead of and behind the body. This approach, called the
hybrid element method, is pursued in [9]. In this method,
the problem is split into a radiation and a diffraction
problem. In two dimensions, it is necessary to solve one
radiation problem and one diffraction problem. In three
dimensions, one radiation problem still needs to be solved
but it is now necessary to solve O(N) diffraction problems
il the domain is discretized by N elements sideways to the
direction of motion.

Both the hybrid element method and the present tech-
nique have the potentiai of handling more realistic flow
models, like the Euler or the Navier-Stokes equations.
A more careful comparison between the two approaches is
therefore appropriate. The present method is similar to the
hybrid element method in that analytical solutions are used
ahead of and behind the body. In both methods, the basic
idea is to use these solutions to form functional relations
which are satisfied by every bounded solution that fulfills
the upstream condition. The functional relations are used as
inflow and outflow boundary conditions for the problem
close to the body. The major advantage of these boundary
conditions is that they do not affect the solution close to the
body at all. The principal difference between the inflow and
outflow conditions in [9] and those in the present work lies
in the treatment of the oscillatory component in the solution
ahead of and behind the body. We exemplify the difference
for the two-dimensional case where only one osciilatory
component is present. In the hybrid element method, one
relation is imposed at the inflow and one at the outflow
boundary. The upstream condition requires both the
oscillatory component and its horizontal derivative to
vanish ahead of the body. In order to satisfy this, it is
necessary to solve two linear problems with the same matrix
but with different right-hand sides (the radiation and the
diffraction problem). The linear combination of the two
solutions that satisfies the upstream condition constitute the
solution of the problem in question. In the present method,
both conditions on the oscillatory component are imposed
explicitly at the inflow boundary and no conditions at the
outflow boundary. Tt is therefore possible to obtain a
solution that satisfies the upstream condition by only
solving one probiem.

In the present work, we develop this idea to the discrete
case when the problem is discretized by finite differences on
a Cartesian grid. In this case, the boundary conditions are
matrix relations between the dependent variables close to

the boundary in question. To be able to handle bodies of
general shape, a boundary-fitted curvilinear grid is used
to cover the domain close to the body. This makes the
discretization of the Neumann boundary condition on the
body accurate and straightforward. The surrounding liquid
is most easily covered with a Cartesian grid. The need for
both a Cartesian grid and a curvilinear grid is satisfied by
utilizing a composite overlapping grid, cf. [2].

For many realistic applications, the depth of the liquid is
large. If a grid with constant vertical grid size is used to
cover the surreunding liquid, the majority of grid points will
be in the domain between the body and the bottom, where
the solution can be expected to vary slowly. The most
straightforward way to make our method efficient for this
case is to stretch the grid in the vertical direction, so that the
vertical grid size increases towards the bottom. Even more
grid points would be saved if a coarse component grid is
used to discretize the domain close to the bottom. However,
these straightforward extensions of the method will not be
addressed in the present paper.

The hybrid element method and the present method are
similar in that they both discretize the flowfield. Both
methods therefore use discrete approximations of the dif-
ferential equation and the boundary conditions. If the same
order of accuracy is employed in both approaches, it is to be
expected that both methods would produce similar results
on grids of comparable resolution. If a direct method, like
Gaussian elimination, is used to solve the occurring linear
systems of equations, the hybrid element formulation in [9]
has the advantage that the system matrix is symmetric. It is
slightly faster and less memory consuming to selve such a
problem than the unsymmetric linear system that emanates
from the present method. Only the comparison between
practical implementations of both methods could elucidate
whether it is faster to solve one unsymmetric linear problem
compared to two symmetric ones.

The linear systems become too large to be solved by a
direct method in the three-dimensional case, so both the
hybrid element and the present method must utiiize iterative
techniques. An cfficient iterative scheme for the present
method has recently been developed, cf. [8], and we are
presently implementing it for the three-dimensional case. At
this time, it is therefore difficult to predict the relative per-
formance of the two methods. However, one advantage of
the present method is that it only requires the solution of
one problem, cf. [107, in contrast to the &(N) problems in
the hybrid element method. It is the belief of the authors
that the present method will prove to be superior in the
three-dimensional case.

2. THE COMPOSITE GRID

The composite grid method is a general tool for solving
PDEs on complex domains, cf. [2]. The basic idea is to
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FIG. 1,

A composite grid.

divide the complex domain into simple overlapping sub-
domains, the union of which completely covers the region of
interest. Each subdomain 1s covered by a component grid.
This set of component grids taken together is called a com-
posite grid. The component grids overlap each other with
no requirement that they exactly match up at their edges.
The main advantage compared to covering the whole
domain with one single grid is that each component grid can
be chosen to have a smooth transformation to the unit
square; in particular it can be made without singularities.
An example of a composite grid is given in Fig. 1.

Each component grid can be constructed almost inde-
pendently of the other components grids. However, one
constraint is that the overlap must be sufficiently large so
that accurate interpolation relations can be formed. To
mintmize the number of grid points it is also desirable that
the grid spacing be about the same on each grid where two
component grids overlap.

The grid-generation program CMPGRD, cf [1], was
employed to construct the composite grids. This program
supplies all the information needed to form the difference
equations and the interpolation relations. Furthermore,
CMPGRD is capable of constructing three-dimensional
composite grids, so the present method can be extended to
three dimensions.

3. THE COMPONENT GRIDS

In the present case, the composite grid consists of two
overlapping component grids. The domain close to the
body, Q. is covered by the curvilinear grid G, and the sur-
rounding sea, {2, is covered by the Cartesian grid G, cf.
Fig. 2 and Fig. 3. Each component grid is bounded by four
smooth boundary curves. For the grid G-, these are the free

o N e 4+

FIG. 2. The two subdomains.

surface, the bottom, and the inflow and outflow boundaries.
The grid G, is wrapped around the body. In this case the
boundary curves consists of the body surface, the outer
boundary, and the periodic boundary. The outer boundary
is located at an approximately constant distance from the
body and the periodic boundary is situated between the
rightmost points on the body boundary and the outer
boundary.
We define the grid points in the Cartesian grid G- by

xe=a+(k—1)h,, k=0,1,.,N +1

j=1,2,., MS,

(6)

Z=—d+{;—1) 1., (7

where the constants ¢ and b are chosen such that the
domain £, is contained within & < x < b. The grid sizes are
h.=d/(MS—1) and h = (b—a)/(N®—1), where M“>1
and N©> 1 are natural numbers.

The curvilinear grid G, can be viewed as the discrete
image of a mapping from a unit square in the (r, s} plane
onto 2. The mapping can formally be written as

x=x%r5)

(8)

z=z%r,s)
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FIG. 3. The two component grids,
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FIG. 4. Different types of grid points in the grid G ..

and the grid points are given by x, ;= x®(r,, 5;) and z, ;=
z%(ry, 5;), where

re=(k—1)h,, k=12, ., N® (9)

Sl:(jgl)hss jzlezsaMB (10)

The grid sizes are h,=1/(N®—1) and h,=1/(M%—1),
where M?>1 and N?> | are natural numbers. To obtain
a uselul grid, the mapping (r, s} — (x%, z®) is required to be
smooth, one to one, and onto €,. The mapping is con-
stiucted such that constant-s lines wrap around the body
with r increasing clockwise. Constant-r lines go from the
body surface to the outer surface, with s increasing
outwards. This implies that (r,s) 15 positively oriented.
Furthermore, the grid is periodic in the r-direction with
X=X, vy andz, =z, 08y forj=12 ., M% The
grid line r s will not be used in the following.

In practice, the mapping functions x¥ and =% are often
oniy known at the grid points. However, as we will sec
below, this information is sufficient to form the difference
scheme, provided the¢ underlying mapping functions are
smooth.

To better resolve the details in the solution close to the
body surface, we give the grid G, higher priority than the
grid G . This means that all grid points of grid G will be
used in the discretization of the probiem, while some grid
points of grid G in the region of overlap will not be used.
The algorithm that decides which gridpoints will be used
and how they will be used is the backbone of the program
CMPGRD. It is thoroughly described in {2]. In the
following, let (j, k) € { - denote the set of indices of used grid
points (x;, z,) in the grid G which are not located at the
boundary and not neighbor to an unused grid point, cf.
Fig. 4.

4. DISCRETIZING THE EQUATIONS

We define a grid function on grid G¢ by f, . = f{x;, z,)
and on grid Gg by g.=g(x"(r;, 5¢), 2%(r;, 5:)). The

forward and backward divided difference operators in the
x-direction on the grid G are defined as

D‘fk—ﬁ“,’; Jik (11)
D Jz‘k=fi————a""“hﬁ'“"". (12)

The corresponding operators in the z-direction on the grid
G- and in the r- and s-directions on the grid G4 are defined
in a similar way. We also define the central divided dif-
ference operator as

o=3(D,.+D) (13)

On the Cartesian grid, G, we directly discretize the
Laplace equation by second-order accurate central differen-
ces, This yields
A9(x;, 2) ={D D¥ + D7 D7 ) gy + O2) + O(h2) (14)
for (j, k)e ..

To discretize the Laplace equation on the curvilinear
grid, G, it is first transformed to the (», 5) plane by Eq. (8).
This gives the following second-order PDE with variable
coefficients:
8¢ ¢

'6?"‘ C(r, S)g’:a

9%
s) ar ﬁs_o'

Alr, $) %%+B(r, s}

+Drs) 2¢ E(r,

(15)

The coefflicients are given by, cf. [11],

A(ra 5)=(—xrrz:-‘+2xrs ,.Z‘ +X zrr"

L A0 S -t S L. SO .3 N S -

+x2%,2,,— 2x,X22,,— XX ,,Z,

—x, X%z +xlz, Wix,z,—x,2,)° (16)
B(r, s)=(x,z] +2x,2,2,,2,— X,2]z,,

— 2%, 20z 4 X, 2,20 = X, 202, — 2K, XX, 2,

— r,xéz,,+2x XeZ, o+ X2x,2,

+xin,z,— X}z Mxz,~x,2,) (17)
Clr, s)={(x1+20)(x,2,— x,2,)? (18)
D(r, s)={x}+z2)/(x,2,— x,2,)’ (19)
E(r, )= —2(x,x,+z,z)(x,z,— x.z,)% (20)

Here, x,, z,, etc. denote differentiation of the grid transfor-
mations x%{r, 5) and z%(r, 5), respectively. The transformed
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equation is discretized by central differences, which gives the
nine-point formula

A¢(XE(TJ-, Sk), Zﬂ(rj’ Sk))
1

1
z Z Y,n.q(j’ k) ¢j+p‘k+q+@(h3~)+(9(h3)
1 = —1

= - -

(21)

for 2</<N®-2 and 2<k<M?—-1. The coefficients
oot J» k) are given by

E; B, D,
y_l'71_4hrhlv, I(Jfl__zhs+ hf »
o _ _ Eix . _ Ak  Cia
VR A -he 2h, W2

2C,, 2D;, A, Ciy

Yoo= — % __h?_’ }!"0=2—h,+h_f’

E; Biv Dix

Y= —4}1':'!13.: yo’l:;hs-l-h_]f’

__ E v
b dh b,

Here A;,,.., E;, represent the functions A(r;, s}, ..,
E{r,, s,) discretized by second-order accurate central
differences. We now have one equation for each interior grid
point, To close the system, one equation is needed for each
grid point on the boundaries.

5. THE INFLOW AND OUTFLOW
BOUNDARY CONDITIONS

To solve the problem numerically, the infinite domain is
truncated to a< x<bh, where b—a < co. The solution is
assumed to be bounded and satisfy the upstream condition
Eq. (5) at infinity. These conditions are translated into func-
tional relations between the value and the normal derivative
of the solution at the inflow and outflow boundaries. These
relations are derived by making an eigenfunction expansion
of the solution in the z-direction ahead of and behind the
body. To each eigenfunction is the z-direction there is
a corresponding eigenfunction in the x-direction. The
relations are found by requiring the x-eigenfunctions to
have the proper behavior at infinity. They are imposed as
boundary conditions at x=g and x =b.

This approach is also possible in the discrete case, where
the boundary conditions take the form of matrix relations
between the value and the normal divided difference of the
solution at the in and outflow boundaries.

Once the problem in a < x € b has been solved, the solu-

tions in —o<x<g and b<x< oo can be constructed
from the solution and its normal derivative at the
boundaries x = a and x = b, respectively.

5.1. The Continuous Case

To solve Egs. (1}-(5)in x < @ and x = b we use separation
of variables, ¢(x, z}=%(x) ¥(z}. In the z-direction, this
implies

Pl =0, —d<z=<0, (22)
S -F =0, z=10, (23)
F'=0, z= —d. (24)

This problem is not in self-adjoint form with respect to
the % scalar product, ie, {f, g),=[%,/(2)glz}d=
However, introducing {(z)="(z} and differentiating
Eq. (22) transforms the equation into a self-adjoint eigen-
value problem for {. The eigenvalues are the solutions of

\/AT= tanh \/Zd.

If d>1, there i1s one real eigenvalue \/Z>0; otherwise
there are no nonzero real eigenvalues. Introducing
\/Z\,zf\/y—k yields an infinite number of eigenvalues 0 <
\/E < \/E < ---. The corresponding eigenfunctions can be
written as

{25)

{2y =sinh /2, (d+z2) (26)
(Wz)=sin /pe (d+2), k=23, ... (27)

The eigenfunctions for % are found by integrating once.
This gives

POz =1 (28)
Fzy=cosh /4, (d+ z) (29)
PRz =cos S/ (d+z), k=2,3,...  (30)

For convenience, the eigenfunctions have been normalized
to exclude the factors l/\/ﬂv—1 and 1 /\/;,1_ , respectively. The
constant eigenfunction ¥ corresponds to the eigenvalue
\/E =0. In the x-direction, Eq. {1) impiies

AOx)= Ay + Byx (31)
AV(x)= Ayl 4 B emi VA (32)
RO x)= A e VM4 Bevms k=23, .. (3})

Hence, the solution will only be oscillatory in the x-direc-
fion if d > 1. To summarize, the solution can be written as

oo

dix. )= ¥ @*(x) #¥(z),

k=0

(34}
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The orthogonality of the transformed eigenfunctions is
used to determine 2% k= 1,

{(B.Ax,-), L5,
FOy="" 2 T k)2, 35
=" )
where Hf”2 {f, f>,. The function #'“ cannot be

determined in this way because #'© is annihilated by the
transformation to self-adjoint form. Instead we use

el Ax,-), .90("“
¢(x, Z)_ Z <¢b(|’|cy3_k]|§b >2

k=1

RO(x) = &%z}, (36)

This equation is valid for —d<z<0.

To obtain a bounded solution, we must impose restric-
tions on #'” and #%), k = 2. There must be no linearly
growing modes ahead of or behind the body; B,=0.
Moreover, there can only be exponentially decaying modes;

=0 ahead of the body and B, =0 behind it for k = 2.

We impose B, =0 by differentiating Eq. {36) with respect

to x and applyingitto z= —d, i,

—d)=0.

B i": {polx, ) 5, Py (37)

103

The exponentially decaying modes satisfy d#'%/dx=

1 ®'% ahead of the body and d#“)/dx= — /u, &%
behind it. Applying these relations to Eq. {35) yields

(hola, ), XY, — S {b.la
CBaclhy ), FE S+ S (udby ), FE>, =0 (39)

fork =2
The upstream condition, Eq. {5), implies that there must

be no osciliatory component in the solution ahead of the
body. This yields

), FE, =0 (38)

<¢:(a! ')s yf—_“>2=0
{¢.da, ), F =0

(40)
(41)

The oscillatory part of the solution behind the body
depends on the solution close to the body.

We observe that a constant function is a solution of the
homoegeneous counterpart of Eqs. (1)-(5) and the in and
outflow boundary conditions, Egs. (37)-(41). To determine
this constant and make the problem nonsingular, we
enforce #%(a) =0 instead of B,=0 at x=a. This is done
by applying Eq. (36) for x=a, z= —d The value of B,
cannot be enforced and will instead depend on the solution
close to the body. However, as we will show in Section 5.2,
it will always obtain the value zero.

5.2. Boundedness of the Solution at x = —ao

To find the value of B, ahead of the body we integrate
the differential equation over the domain Qzu Q. I=
{as0q0 4¢ dS=0. By integration by parts we obtain

-4 5

where 6/dn denotes the outward normal derivative. Insert-
ing Eq. (4) yields that the contribution from the second
integral i1s zero. By using the boundary conditions
Eqgs. (2), (3) the first integral can be written as

% ar - 39 (42)

o¢

dr=o(b)—ola), (43)
r(-a
where
o 9 (3 x,0
|| A0,

Inserting the eigenfunction expansion Eq. (34) yields

o0 (k)

6(){) B k§0 dx

ol sowa rool 6

By integrating Egs. (28 -(30} and using the relation for the
eigenvalues, Eq. (25), we find

Q
[ 7o a-s0y=d-
—d

) (46)
j FEC dl —FO0)=0, k=1,2,3,.
—d
Inserting these expressions into Eq. {45) gives
d(@(()]
a(x)=(d—1)——(x). (47)
X

Behind the body, B, =0, which implies o(#) = 0. Therefore,

a(a)=0and B, =0 ahead of the body as well.

5.3. The Discrete Case

A second-order accurate discretization of Egs. (1)}-(5)in
—w<x<aorb<x<oo is given by

(DYDY +D° D ), =0, j=12,., M (48)
Dig =0, j=1, (49)
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for —oo <k €0 or N <k < oo, respectively, By separation
of variables, cf. [107], the solution of Egs. (48)}-(30) may be
expressed as '

MC
b= L GIH (51)
p=10
where
AP =1 (52)
H =cosh /i, (d+z;) (53)
HP =cos Sy, (d+z), p=23,., M —1, (54)
and
G = Ag+ Byx, (55}
(gil}=Alei\/Z.w.-+Blefl'\/zxk (56)
{(};cﬂ] = Ape—\/ﬂ_px.g-_'_ Bpe\/?p.\r;.-, p= 2, 3’ s MC* 1. (57)
The eigenvalues in the z-direction are the solutions of
2 -
Hw=tanh(ﬁ d). {58)

h.  sinh(/x h.)

If ¢ > d{h.), there is one real eigenvalue \/h_l > 0; otherwise
there are no nonzero real eigenvalues. Hence, the oscillatory
component %" is present only if d>d(k.). In passing,
we note that the function d(h.) has the property
lim,, _ o d(h}= 1. Introducing \ﬂc; =i \/a yields an infinite
number of eigenvalues O<\/v_2< vy < ---. However, we
only consider the M“—2 smallest because every eigen-

vector #“, g> M -1, is a linear combination of
0 1 tC—1
A0, A M

The eigenvalues \/xk, and \/E are related to \/: and
A,=1 \/,t_i_p through

2
h

(cosh(\/x h.)— 1) =h% (1—cos(/AA,)) (59)

LTI )

We only consider \/Z> 0 and \/,ITP>0; a negalive value
only interchanges the meaning of A, and B, in
Eqgs. {56), {(57).

We define the scalar product and norm for grid functions
J.gas

M<
Loeom=Y fign WIi=L{L (60)

i=2

It is shown in [10] that
(D7 P DRty =0, for p+#gq.  (61)

To find the value of the functions 47, p > 1, we use the
orthogonality of the eigenvectors

<Di¢(xj: ')s Dz_%(p}>h

@gtr) —
! D=

p=1,2,. M1

(62)

Similarly to the continuous case, the eigenvactor #®' is
annihilated by D7 . Instead, its coefficient is found by

M s = eip)
(D7 d{x,, ), D " 2
G0 =(xi, 20~ ) |u; A

p=1

Hz,).
(63)

To obtain a bounded solation, there must be no linearly
growing modes ahead of or behind the body: B, =0. This is
imposed by

MC—1 X yz T g (p)
. {DFD dix,, ), DA,
Dyd(x,, z))— Z . HD:kf(p)Hi :

p=1

x 1Pz )=0.

(64)

Furthermore, there can only be exponentially decaying
modes; 4,=0 ahead of the body and B,=0 behind
it for p=23,.,M“~1 This implies D% =

%' sinh \/u, b fh, and DG = —%sinh Ju, h jh,.
Hence, combining the above relations yields
<D(§D:—¢('r] s " )7 Dz_”“”}h
inh /i, h,
”Sl_n_;“* (D g(xy, ), DAY, =0

{DyD™ dlxye, ), DAY,

(63)

N sinh /u, I,

LS (D7 e, ) DAY, =0,

{66)

X

Similar to the continuous case, the upstream condition,
Eq. {5), implies

(D™ §lxy, ) DA, =0
<D8‘DZ__¢(.’C], ')! Di'}f“]>h:0'

(67)
(68)

As in the continuous case, a constant function is the
solution of the homogeneous discrete counterpart of
Egs. (1}-(5) and the in and outflow boundary conditions
Eqgs. (64)-(68). To obtain a non-singular problem, this
constant is fixed by replacing the condition B, =0 ahead of
the body by #\°’ = 0. This is imposed by applying Eq. (63)
fork=1,j=1.

In contrast to the continuous case, it is not possible to
guarantee B, =0 ahead of the body. That 1s, the difference
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scheme is not conservative. Two main sources for non-
conservation can be distinguished in our scheme. First, the
interpolation between the grid functions is not conservative
and, second, the difference equation on the curvilinéar grid
is not written in conservative form. However, conservation
is not crucial as long as the solution is smooth on the grid.
The size of By ahead of the body is therefore only considered
as a measure of the accuracy of the solution.

To summarize, we have M <+ 1 boundary conditions at
x=g and M“—1 at x=4 At the boundary x=a, we

enforce the linear relations Eqs. (63), (65), (67), (68)
between the grid function ¢, , at j=1,2,.., M and k=
0,1,2. At x=4, we mmpose the linear relations

Eqgs. (64), {66). They couple the grid function at the grid
points (x;,z,), where k=N°—1, N¢ N®+1 and
J=1,2, .., MC.

6. THE REMAINING BOUNDARY CONDITIONS

To discretize the boundary condition on the body, we
transform Eq. (4) to the (r, s} plane according to

2Z24+x23¢ =z,

o+ x,x, 5‘;25
det(J} Os —

det(J) ¢ér

=0, (69)

where det(J)=x,z,—z,x,. Now, d/dr is discretized by a
central difference and é/ds by the second-order accurate
one-sided formula:

¢ 1

E(rja Sl)=L2h_- (—¢j‘,3+4¢j.2‘

3¢,1)+ Ok, (70)

The periodic boundary condition on grid G 5 yields ¢, , =
$i. wo_ 1 This defines Eq. (21) at the grid lines r; and
FNB_ 1.

We discretize the z-derivative in the boundary condition
at the free surface z,,c by a central difference. This formula
contains the grid function at the grid line z ., ,, which is
outside the grid. It is eliminated by also enforcing the
discrete Laplace operator at the grid line z,,c. This yiclds

(Bt 80520~ ((1-5) DI DU 402 ) e
+ O(h2) + O(R2), (71)

Similarly, the boundary condition at the bottom is
discretized by

z h; x x
6.0, 21) = (D; B pepe

7 )¢':’.1 + O(2) + O(h,R2).

(72)

7. THE INTERPOLATION RELATIONS

The grid functions on the component grids are coupled by
interpolation relations. They are imposed at the grid points
on the grid line s, on the grid G, and at the used grid
points which are neighbors to unused grid points on the grid
G, cf. Fig. 4. In the following, they will be called the inter-
polating grid points. Qur difference scheme is a second-
order accurate approximation to a second-order equation
and the component grids have an overlap which is propor-
tional to the grid size. To obtain the same order of accuracy
for the total solution, it is necessary to use (at least) third-
order accurate interpolation, cf [2]. For example, let
(x,, z,.) be a interpolating grid point on the grid G and let
7, § satisfy x, = x®(F, §) and z,, = z3(F, 3). Let ¢ be the grid
function on the grid G~ and ¢ the grid function on the grid
G 5. The biquadratic interpolation yields the linear relation

1 1
Z Z ﬁp(?) Bi(5) ¢’f'9+p,k+f:0’

D — (73)
p=—1 1=l
where
x_((F)=dr, Ar; 2k, B_A3) = Asy A5y, 1 /2h]
ao(F)= —dr,_ Ar, [l o) = —ds._ Ase./h
051(?):4’}'-1 Arj/zhfa Bi(3}=4s,_, Ask/th

(74)

with 4r,=F—r, and 4s,=5—s,, g=j—1,j, j+ 1. Here,
i <r<r,+1 and skfl s v<sk+1 In practice, the map-
ping functions x” and z# are often only known at the grid
points in G ,. In that case, 7 and § must be interpolated from
the values at the grid points. In order to obtain third-order
accuracy in Eq. (73) it is also necessary to use third-order
interpolation when 7 and ¥ are calculated.

The interpolating grid points on the grid G ; yield similar
linear relations between the grid functions. However, the
grid G is Cartesian so F and § can be found anaiytically.
This closes the system. We now have the same number of
equations as used grid points.

8. SOLYING THE LINEAR SYSTEM OF EQUATIONS

The sparse linear system of equations was solved by LU-
decomposition followed by iterative improvement until the
norm of the residual did not decrese further. We used the
HARWELL sparse matrix package. In this package the
pivoting strategy can be biased continuously between
numeric and sparsity concerns. It was found necessary to
bias the pivoting towards numeric concern when the num-
ber of equations exceeded ~2000. Otherwise, the resulting
LU-decomposition became so poor that the iterative
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improvement diverged. Ali calculations presented in the
subsequent sections were performed in 32 bits precision on
a Sun SPARC station SLC.

9. VALIDATING THE DIFFERENCE SCHEME

The following test was designed to check the order of
accuracy of the difference scheme. A solution is chosen for
the continvous problem, which need not satisfy the differen-
tial equation or the boundary conditions. The differential
equation and the boundary conditions are applied to the
solution to obtain a continuous forcing function. The
forcing function for the discrete problem is taken to be the
continuous forcing at the grid points. The order of accuracy
is then found by studying the difference between the discrete
solution and the continuous solution at the grid points for
different grid sizes. At the inflow and outflow boundaries the
continuous problem satisfies an infinite number of relations,
but it is only possible to enforce a finite number of relations
for the discrete problem. There is no obvious restriction of
the relations for the continuous problem to the discrete
problem, and for this reason the discrete relations are
simply applied to the continuous solution to obtain the
forcing for each discrete relation. The behavior of these rela-
tions are instead investigated separately; this is described
below.

A circular cylinder of radius R was used as test body.
The non-dimensional depth was d=5R=7.8125 and the
distance between the surface and the center of the cylinder
was 2R. The radius of the outer boundary of the grid around
the cylinder was 1.5R and the computational domain was
between —2.7 < x < 2.7. This size corresponds to three grid
lines in the coarsest Cartesian grid ahead of and behind the
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FIG. 5. The coarsest composite grid around the test body.

TABLE 1

The Difference i — v, Measured in Maximum Norm
at the Grid Points

Grid size Ng My Ne Me flor — 24l
ah 24 5 17 22 7.80% 102

2h 47 9 13 43 1.69 x 1072
4h/3 70 13 49 64 7.12%107?

h 93 17 65 85 442 x 103

grid around the cylinder. The coarsest composite grid is
shown in Fig. 5. The test was applied for the function

ulx, z)=a(x* + (z+ d/2)), (75)
where o was chosen to make max « = 1 in the computational
domain. The difference between the exact and the discrete
solutions as functions of the grid size is given in Table 1.
The result on the finest grid suggests that that solution was
aftected by roundoff errors. Otherwise, the test confirms
that our difference scheme is second-order accurate when
the discrete inflow and outflow boundary conditions are
satisfied exactly.

The subsequent experiment was done to investigate the
quality of the boundary conditions at x =g and x= 5. Two
solutions, ¢, and ¢,, were computed around the test body.
The computational domains in the x-direction were
a,<x<b, and a,<x<h,, respectively, where a, <a,
and b, <€ b,. After the solution in a,<x<h, had been
calculated, it was extended to a, < x < b, by the eigenvector
expansion given by Eq. {51). To make it easier to compare
the two solutions, a constant was added to each of them
such that ¢,(a,, 0) =0. The shorter of the grids was identical
to the grid in Table 1 with grid size 24. The longer grid was
identical to the shorter grid in ¢, < x < &,, but the Cartesian
component grid was extended to ¢, S x<a;and b, < x < b,
by increasing N and keeping #, unchanged. The difference,
$; — ¢, measured in maximum NOTM Over a4, < x < b, i3
given in Table II and the conclusion is that the difference
is negligible. Obviously, there is a considerable gain in
decreasing b — a; the number of equations decreases and the
solution close to the body becomes less sensitive to roundofl
errors, since the eigenvalue of smallest magnitude of the
discrete operator behaves like (b —a)~2, ¢f. [10].

To further validate the scheme, the hft and drag coef-

TABLE 11

Extension of the Solution by the Eigenvector Expanston

1] b ay b,

61— 2l

947 x10°¢

'|¢'l'|aa

531

—54 54 —-27 27




56 PETERSSON AND

TABLE 111

The Lift and Drag Coefficients and the Conservation Error
for the Circular Cylinder

C, o B, ahead Ny M, N M,
20770 1.1323 57x107 24 5 17 2

20586 1.1979 181x10~% 47 9 33 43

20583 1.1970 —245%107% 70 13 49 64

20574 11963

466x107F 93 17 65 85

ficients and the surface elevation for a circular cylinder
were compared with those reported in [5]. They used a
boundary integral method with a kernel that satisfied the
boundary condition on the free surface and the upstream
condition. The finite depth was modeled by inserting a
horizontal plate of length 80R at the depth 5R, where R is
the radius of the cylinder. Outside that region the depth was
infinite. The cylinder had its center submerged 2R below
the surface and the non-dimensional depth was d=5R=
7.8125, which corresponds to the Froude number F,=
U/\/EI—) = 1/\/;!= 0.3578. Here, U is the speed of the body,
g is the acceleration of gravity, and D is the depth of the
liquid. In our computation, the same grids were used as for
the above-described test of the accuracy. The lift and drag
coefficients were found by integrating the pressure given by
the Bernoulli equation. Expressed in our scaled variables,
this yielded

CL=%<£

Q4+ 9247 dx
(76)
1

Ch=pd Qb +9i+9D .

The result is given in Table I, where also the conservation
error, B, ahead of the body, is reported. The oscillatory
behavior of B, indicates that roundoff errors affected the
solutions on the two finer grids. The results reported in [5]
were C; =2.04 and Cp,=1.19,

It is consistent with the iinearized free surface boundary
condition Eq. (2) to approximate the elevation of the free

I
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FIG. 6. The elevation of the sutface above the test body. The solid line
corresponds to the present calculation on the finest grid. The dashed line
represents the result reported in [5].
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FIG. 7. Streamlines around the ellipse of length 3.0.

surface by n{x) = —¢ .(x, 0). The elevation reported in [ 5],
together with the present results are given in Fig. 6. In our
calculation, the surface elevation computed on the three
finest grids was identical within graphical accuracy. Only a
gualitative comparison with the results in [5] is possible,
because of the difficulty to accurately duplicate Fig. 12 in
that paper. However, withint graphical accuracy, both the
phase and the amplitude of the surface elevation agree well.

10. NUMERICAL EXAMPLES

To exemplify the use of the present method, we studied
how the flow about ellipses and rounded rectangles depend
on the length of the body at a fixed Froude number. In
particular, we calculated the lift and drag coefficients. In all
computations, the non-dimensional depth was fixed tod=5
which yielded a Froude number F,= 1/,/3.

The ellipses had the horizontal semiaxis submerged 0.54
below the surface and the length of the vertical semiaxis was
0.14. The outer boundary of the grid around the ellipse was
chosen to be an ellipse which semiaxes were 0.15d larger
than the corresponding semiaxes of the boedy. To obtain
reasonably accurate solutions, the grid sizes were chosen to
approxintately equal those of grid size 24 in the afore-
mentioned accuracy test, cf. Table 1. The lift and drag coef-
ficients were defined as in Eq. (76) except that we replaced
R by the length of the horizontal semiaxis. To exemplify the
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FIG. 8. The geometry of the rounded rectangle.
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FIG. 9. Lift and drag coefficient as functions of the length of the ellipse
and the rounded rectangle. The solid line represents C, for the ellipse, the
dashed line is Cp, for the rounded rectangle, the dotted line corresponds to
C, for the ellipse, and the long-short dashed ling represents C, for the
rounded rectangle.

flow field, we present the sireamiines around the ellipse of
length 3.0 in Fig, 7.

The thickness of the rounded rectangle was set to (1.2, the
radius of the rounded ends to 0.1¢, and the upper horizontal
boundary was submerged 0.4¢ below the surface, cf. Fig, 8.
The outer boundary of the grid was chosen to be the
rounded rectangle situated (.15 outside the body. The grid
sizes were chosen by the same rule as for the grid around the
ellipse. For this geometry we replaced R in Eq. {76) by half
the length of the body. The results are given in Fig. 9. For
both the ellipse and the rounded rectangle, we found that
the waves generated by the front and the aft part of the body
cancel each other at certain lengths, resulting in a minimum
in C,. The minima occur for different values of the length
for the two geometries which implies that the more slenderly
shaped ellipse does not always generate less drag compared
to the rounded rectangle of the same length. We remark that

C,, only includes the wave drag. The total drag, which also
contains viscous drag, is likely to be larger for the rounded
rectangle than for the ellipse.
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